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Abstract. When ontologies reach a certain size and complexity, faults such as
inconsistencies, unsatisfiable classes or wrong entailments are hardly avoidable.
Locating the faulty axioms that cause these faults is a hard and time-consuming
task. Addressing this issue, several techniques for semi-automatic fault localiza-
tion in ontologies have been proposed. Often, these approaches involve a human
expert who provides answers to system-generated questions about the intended
(correct) ontology in order to reduce the possible fault locations. To suggest as
informative questions as possible, existing methods draw on various algorithmic
optimizations as well as heuristics. However, these computations are often based
on certain assumptions about the interacting user.
In this work, we characterize and discuss different user types and show that ex-
isting approaches do not achieve optimal efficiency for all of them. As a remedy,
we suggest a new type of expert question which aims at fitting the answering
behavior of all analyzed experts. Moreover, we present an algorithm to optimize
this new query type which is fully compatible with the (tried and tested) heuristics
used in the field. Experiments on faulty real-world ontologies show the potential
of the new querying method for minimizing the expert consultation time, inde-
pendent of the expert type. Besides, the gained insights can inform the design of
interactive debugging tools towards better meeting their users’ needs.

Keywords: Ontology Debugging · Interactive Debugging · Fault Localization ·
Sequential Diagnosis · Expert Questions · Ontology Quality Assurance · Onto-
logy Repair · Test-Driven Debugging

1 Introduction

As Semantic Web technologies have become widely adopted in, e.g., government, se-
curity and health applications, the quality assurance of the data, information and kno-
wledge used by these applications is a critical requirement. At the core of semantic
web technologies, ontologies are a means to represent knowledge in a formal, structu-
red and human-readable way, with a well-defined semantics. As ontologies are often
developed and cured in a collaborative way by numerous contributors [41, 39] possibly
not sharing their conceptualization of the domain of interest, are merged by automated
alignment tools [13], reach sizes and complexities exceeding human reasoning and un-
derstanding capabilities [5], or use expressive logical formalisms such as OWL 2 [6],
faults occur regularly during the evolution of ontologies [13, 32, 3, 17]. Since one of the
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major benefits of ontologies is the capability of using them to perform logical reaso-
ning and thereby solve relevant problems, faults that affect the ontology’s semantics are
of particular concern for semantic applications. Specifically, such faults may cause the
ontology, e.g., to become inconsistent, include unsatisfiable classes or feature wrong
entailments.

One important step towards the repair of such faults is the localization of the re-
sponsible faulty axioms. To handle nowadays ontologies with often thousands of axi-
oms, several fault localization approaches [13, 33, 10, 14] have been proposed to semi-
automatically assist humans in this complex and time-consuming task. These approa-
ches, which are mainly based on the model-based diagnosis framework [18, 12], use
the faulty ontology along with additional specifications to reason about different fault
assumptions. Such fault assumptions are called diagnoses if they are consistent with all
given specifications. The specifications usually comprehend some requirements to the
correct ontology, e.g., in the form of logical properties (e.g., consistency, coherency),
and/or in terms of necessary and forbidden entailments. The latter are usually referred
to as positive and negative test cases [4, 33, 31].

Research on model-based diagnosis has brought up various algorithms [18, 12, 10,
19, 13, 34] for computing and ranking diagnoses; however, a frequent problem is that
a high number of competing diagnoses might exist where all of them lead to repaired
ontologies with necessarily different semantics [19]. Finding the correct diagnosis (pin-
pointing the actually faulty axioms) is thus crucial for successful and sustainable repair.
Since it is a mentally-demanding task for humans to recognize and reason about entail-
ments and non-entailments [7] of the ontology under particular fault assumptions, inte-
ractive techniques1 [33, 19] have been developed to undertake this task and relieve the
user as much as possible. What remains to be accomplished by the interacting human—
usually an ontology engineer or a domain expert (referred to as expert in the sequel)—is
the answering of a series of queries about the intended ontology that are shown to them
by the system. Roughly, that means the user has to classify certain axioms as either
entailments (positive test cases) or non-entailments (negative test cases) of the intended
ontology. A concrete implementation of such a query-based fault localization approach
is OntoDebug2 [30], a plug-in for the popular ontology editor Protégé [15].

Several evaluations [33, 34, 26] have shown the feasibility and usefulness of query-
based fault localization, and its efficiency has been improved by various algorithmic op-
timizations [9, 35, 22, 27] and the use of heuristics [33, 28, 21, 25, 20] for the selection
of the most informative questions to ask an expert. However, the used heuristics, al-
gorithms and optimization criteria are based on certain assumptions about the question
answering behavior of experts. In this work, we critically discuss existing approaches
with regard to these assumptions. Particularly, we characterize different types of ex-
perts and show that not all of them are equally well accommodated by current querying
approaches. That is, we observe that the necessary expert interaction cost to locate the
ontology’s faults is significantly influenced by the way queries posed by the debugging
system are answered. To overcome this issue, we propose a new way of user interaction

1 Depending on the community, these techniques are referred to as Sequential Diagnosis and
Interactive (or: Test-Driven) Ontology (or: Knowledge Base) Debugging.

2 All information about OntoDebug can be found at http://isbi.aau.at/ontodebug/
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that serves all discussed expert types equally well and moreover increases the expected
amount of information relevant for fault localization obtained from the expert per as-
ked axiom. In addition, we present a polynomial time and space algorithm to generate
and optimize the newly suggested type of question in terms of the well-understood and
proven heuristics used in the field.

The main idea behind the new approach is to restrict questions—which are, for
quite natural reasons, sets of axioms in existing methods—only to single axioms, as
usually done in sequential diagnosis applications [12, 37], where systems different from
ontologies (e.g., digital circuits) are analyzed and such singleton queries are the natural
choice. That is, experts are asked single axioms at a time instead of getting batch queries
which (possibly) include multiple axioms. Experiments on real-world faulty ontologies
manifest the reasonability and usefulness of the new approach. Specifically, we find that,
in more than two thirds of the studied cases, the new querying technique is superior to
existing ones in terms of minimizing the number of required expert inputs, regardless
of the type of expert. In addition, the time for the determination of the best next query is
reduced by at least 80 % in all investigated cases when using singleton queries instead
of existing techniques.

The rest of the work is organized as follows. In Section 2, we give a short intro-
duction to query-based fault localization in ontologies, before we challenge certain as-
sumptions made by state-of-the-art approaches in the field in Section 3. We describe our
proposed approach in Section 4, where we also discuss its pros and cons, and elaborate
an algorithm for the computation of the suggested new query type. Our experiments and
the obtained results are explicated in Section 5. Finally, we point to open questions and
both interesting and promising future research issues in Section 6, before we summarize
the conclusions from this work in Section 7.

2 Query-Based Fault Localization in Ontologies

We briefly recap basic technical concepts used in works on ontology fault localization,
based on [19, 33]. As a running example we reuse the example presented in [25].
Fault Localization Problem Instance. We assume a faulty ontology to be given by
the finite set of axioms O ∪ B, where O includes the possibly faulty axioms and B the
correct (background knowledge) axioms, and O ∩ B = ∅ holds. This partitioning of
the ontology means that faulty axioms must be sought only in O, whereas B provides
the fault localization context. At this, B can be useful to achieve a fault search space
restriction (if parts of the faulty ontology are marked correct) or a higher fault detection
rate (if external approved knowledge is taken into account, which may point at other-
wise undetected faults). Besides logical properties such as consistency and coherency,
requirements to the intended (correct) ontology can be formulated as a set of test cases
[4], analogously as it is common practice in software engineering [2]. In particular, we
distinguish between two types of test cases, positive (set P ) and negative (set N ) ones.
Each test case is a set (interpreted as conjunction) of axioms; positive ones p ∈ P must
be and negative ones n ∈ N must not be entailed by the intended ontology. We call
〈O,B,P ,N 〉 an (ontology) fault localization problem instance (FPI).

Example 1. Consider the following ontology with the terminology T :
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{ ax 1 : ActiveResearcher v ∃writes.(Paper t Review) ,
ax 2 : ∃writes.> v Author , ax 3 : Author v Employee u Person }

and assertionsA : {ax 4 : ActiveResearcher(ann)}. To locate faults in the terminology
while accepting as correct the assertion and stipulating that Ann is not necessarily an
employee (negative test case n1 : {Employee(ann)}), one can specify the following
FPI: fpiex := 〈T ,A, ∅, {n1}〉. ut

Fault Hypotheses. Let UP :=
⋃

p∈P p and C⊥ := {C v ⊥ | C named class in O,B
or P}. Given that the ontology, along with the positive test cases, is inconsistent or
incoherent, i.e.O∪B∪UP |= x for some x ∈ {⊥}∪C⊥, or some negative test case is
entailed, i.e.O∪B∪UP |= n for some n ∈ N , some axioms inO must be accordingly
modified or deleted to enable the formulation of the intended ontology. We call such a
set of axiomsD ⊆ O a diagnosis for the FPI 〈O,B,P ,N 〉 iff (O\D)∪B∪UP 6|= x for
all x ∈ N ∪ {⊥} ∪C⊥. D is a minimal diagnosis iff there is no diagnosis D′ ⊂ D. We
call D∗ the actual diagnosis iff all ax ∈ D∗ are faulty and all ax ∈ O \D∗ are correct.
For efficiency and to suggest changes to the faulty ontology that preserve as much of
its meaning as possible, fault localization approaches usually restrict their focus to the
computation of minimal diagnoses.

Example 2. For fpiex = 〈O,B,P ,N 〉 from Example 1,O∪B∪UP entails the negative
test case n1 ∈ N , i.e. that Ann is an employee. The reason is that according to ax 1(∈ O)
and ax 4(∈ B), Ann writes some paper or review since she is an active researcher. Due to
the additional ax 2(∈ O), Ann is also an author because she writes something. Finally,
since Ann is an author, she must be both an employee and a person, as postulated by
ax 3(∈ O). Hence, D1 : [ax 1], D2 : [ax 2], D3 : [ax 3] are (all the) minimal diagnoses
for fpiex, as the deletion of any ax i ∈ O breaks the unwanted entailment n1. ut

Eliminating Wrong Fault Hypotheses. The main idea model-based diagnosis systems
use for fault localization, i.e., to find the actual diagnosis among the set of all (minimal)
diagnoses, is that different fault assumptions have (necessarily [19]) different semantic
properties in terms of entailments and non-entailments. This fact can be exploited to
distinguish between diagnoses by asking an expert whether a (set of) axiom(s) Q, which
is entailed by some and inconsistent with some other fault assumptions, must be correct
or not. More formally, given a known set of minimal diagnoses D, a (normal) query
(wrt. D) is a set of axioms Q that rules out at least one diagnosis in D, both if Q
is classified as a positive test case and if Q is classified as a negative test case. That
is, at least one Di ∈ D is not a diagnosis for 〈O,B,P ∪ {Q} ,N 〉 and at least one
diagnosis Dj ∈ D is not a diagnosis for 〈O,B,P ,N ∪ {Q}〉. A query Q corresponds
to the question “Is (the conjunction of axioms in) Q an entailment of the intended
ontology?”. The expert who provides answers to queries can be modeled as a function
expert : Q → {y, n} where Q is the query space; expert(Q) = y iff the answer to the
question is positive, else expert(Q) = n.

Every set of axioms X partitions any set of diagnoses D for an FPI 〈O,B,P ,N 〉
into three subsets—the diagnoses predicting that X is a positive test case (set D+

X ⊆
D), the ones predicting that X is a negative test case (set D−X ⊆ D), and the ones
that do not predict any classification for X (set D0

X ⊆ D). More specifically, among
the diagnoses in D, D+

X comprises exactly the diagnoses that are no diagnoses for
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〈O,B,P ,N ∪ {Q}〉, D−X those that are no diagnoses for 〈O,B,P ∪ {Q} ,N 〉, and
D0

X all remaining ones. A partition P of D into three sets is called q-partition iff there

is a query Q wrt. D such that P =
〈
D+

Q,D
−
Q,D

0
Q

〉
. According to the definition of a

query, it holds that Q is a query iff both D+
Q and D−Q are non-empty sets. The notion

of a q-partition is leveraged by current approaches for query generation [26], query
verification [33] and query quality estimation [27, 21].

Example 3. Let the known set of diagnoses for fpiex be D = {D1,D2,D3} (see Ex-
ample 2). One query wrt. D is, e.g., Q1 := {ActiveResearcher v Author}. Because,
(i) adding Q1 to P yields that the removal of D1 or D2 from O no longer breaks the
unwanted entailment Employee(ann), i.e., D1,D2 are no longer minimal diagnoses,
(ii) moving Q1 to N means that D3 is not a minimal diagnosis anymore, as, to prevent
the entailment of (the new negative test case) Q1, at least one of ax 1, ax 2 must be dele-
ted. The resulting q-partition for Q1 is thus 〈D+

Q1
,D−Q1

,D0
Q1
〉 = 〈{D3} , {D1,D2} , ∅〉.

Note, e.g., Q2 := {Author v Person}, is not a query since no diagnosis in D is invali-
dated upon assigning Q2 to P , i.e., a positive answer does not give any useful informa-
tion for diagnoses discrimination. Intuitively, this is because Q2 does not contribute to
the violation of n1 (in fact, the other “part” Author v Employee of ax 3 does so). ut

Problem Definition. The query-based ontology fault localization problem (QFL) is to
find for an FPI a series of questions to an expert, the answers of which lead to a single
possible remaining fault assumption. The optimization version of the problem includes
the additional goal to minimize the effort of the expert. Formally:

Problem 1 ((Optimal) QFL). Given: FPI 〈O,B,P ,N 〉. Find: (Minimal-cost) series of
queries Q1, . . . , Qk s.t. there is only one minimal diagnosis for 〈O,B,P ∪P ′, N ∪N ′〉
where P ′ (N ′) is the set of all positively (negatively) answered queries, i.e., P ′ :=
{Qi | 1 ≤ i ≤ k, expert(Qi) = y} and N ′ := {Qi | 1 ≤ i ≤ k, expert(Qi) = n}.

Note, there is no unified definition of the cost of a solution to the QFL problem. Basi-
cally, any function mapping Q1, . . . , Qk to a non-negative real number is possible. We
pick up on this discussion again in Sec. 3.

Example 4. Let the actual diagnosis be D3, i.e. ax 3 is the (only) faulty axiom in O
(intuition: an author is not necessarily employed, but might be, e.g, a freelancer). Then,
given fpiex as an input, solutions to Problem 1, yielding the final diagnosis D3, are,
e.g., P ′ = ∅,N ′ = {{∃writes.> v Employee} , {Author v Employee}} or P ′ =
{{ActiveResearcher v Author}} ,N ′ = ∅. Measuring the querying cost by the num-
ber of queries, the latter solution (cost: 1) is optimal, the former (cost: 2) not. ut

3 Discussion of Query-based Fault Localization Approaches

In this section we analyze existing approaches regarding the assumptions they make
about (the query answering behavior of) the interacting user, their properties resulting
from natural design choices, as well as optimization criteria they consider.
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Assumptions about Query Answering. All proposed approaches drawing on the in-
teractive methodology described in Sec. 2 make the assumption during their computa-
tions and optimizations that the expert evaluates each query as a whole. That is, they
perform an assessment of the query effect or (information) gain based on two possible
outcomes (y and n). However, in fact, since queries might contain multiple axioms, the
feedback of an expert to a query might take a multitude of different shapes. Because,
the expert might not view the query as an atomic question, but at the axiom level,
i.e., inspecting axioms one-by-one. Clearly, to answer the query Q = {ax 1, . . . , axm}
positively—i.e., that the conjunction of the axioms ax 1, . . . , axm is an entailment of
the intended ontology—one needs to scrutinize and approve the entailment of all single
axioms. To negate the query Q, in contrast, it suffices to detect one of the m axioms
in Q which is not an entailment of the intended ontology. In this latter case, however,
we might reasonably assume the interacting expert to be able to name (at least this) one
specific axiom ax∗ ∈ Q that is not an intended entailment. We might think of ax∗ as a
“witness of the falsehood of the query”. This additional information—beyond the mere
negative answer n indicating that some undefined query axiom must not be entailed—
justifies the addition of n∗ := {ax∗}, instead of Q, to the negative test cases. Please
note that n∗ provides stronger information than Q, and thus potentially rules out more
diagnoses. The reason is that each diagnosis that entails Q (i.e., is invalidated given
the negative test case Q) particularly entails ax∗ (i.e., is definitely invalidated given the
negative test case n∗). Apart from the scenario where experts provide just a falsehood-
witness in the negative case, they might give even more information. For instance, an
expert could walk through the query axioms until either a non-entailed one is found or
all axioms have been verified as intended entailments. In this case, there might as well
be some entailed axioms encountered before the first non-entailed one is detected. The
set of these entailed axioms could then be added to the positive test cases—in addition
to the negative test case n∗. Alternatively, the expert might also continue evaluating
axioms after recognizing the first non-entailed axiom ax∗, in this vein providing the
classification of all single query axioms in Q.

Based on this discussion, we might—besides the query-based expert that answers
queries as a whole, exactly as specified by the expert function defined in Sec. 2—
characterize (at least) three different types of axiom-based experts which supply infor-
mation beyond the mere n label of the query in the negative case:3

– Minimalist: Provides exactly one ax∗ ∈ Q which is not entailed by the intended
ontology.

– Pragmatist: Provides the first found axiom ax∗ ∈ Q that is not entailed by the
intended ontology, and all axioms evaluated as entailments of the intended ontology
until ax∗ was found.

– Maximalist: Provides the classification of each axiom in Q as either an entailment
or a non-entailment of the intended ontology.

Consequently: (i) In general, without knowing the answering type of the interacting
expert in advance, the binary query evaluation conducted in existing works is only an

3 Note that a positive query answer (y) implicitly provides axiom-level information, i.e., the
positive classification of all query-axioms. Therefore, the discussed expert types differ only in
their query negation behavior.
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approximation. (ii) Also if the expert type is known, it is an open issue which form of
interaction can exploit the expert knowledge most beneficially and economically. Our
experimental evaluations reported in Sec. 5 shall confirm (i) and bring light to (ii).
Natural Design Choices. As explicated in Sec. 2, the principle behind queries is the
comparison of entailments and non-entailments resulting from different fault assump-
tions (diagnoses). In existing works [33, 28], this is often done by computing common
entailments (of specific types)—e.g., subsumption and assertion axioms resulting from
classification and realization reasoning services [1]—for some diagnoses and verify
whether some other diagnosis becomes inconsistent when assuming correct these axi-
oms. At this, it stands to reason to use and further process all entailments returned by
the reasoner. Moreover, the fewer entailments are used, the higher is the chance that
these are entailed by all (known) diagnoses and hence do not constitute a query. Besi-
des, assuming a query-based expert (see above), query selection heuristics [33, 28, 21,
25] can be optimized to a higher degree due to the simple fact that a larger allowed
cardinality of queries implies a larger search space for queries. For these reasons, it is
quite natural to specify queries as sets of axioms.
Optimization Criteria. The meaning of “minimal-cost” in Problem 1 might be defi-
ned in different ways. Most existing works on query-based fault localization, e.g., [33,
30, 28, 19]— especially in the empirical analyses they present—specify the cost of a
solution Q1, . . . , Qk to the QFL problem to be the number of queries, i.e., k. The un-
derlying assumption in this case is that each two queries mean the same (answering)
cost for an expert. Given that queries might include fewer or more axioms of lower or
higher (syntactic or semantic) complexity, we argue that this cost measure might be too
coarse-grained to capture the effort for an interacting expert in a realistic way. Instead,
it might be better suited to measure the costs at the axiom level. However, a fundamen-
tal problem with a minimization of the axiom level costs is the need to compute the
specific query axioms for multiple (or all) queries, which generally involves high com-
putation costs in terms of a high number of reasoner calls. A remedy to this problem
and a two-staged technique to minimize both the number of queries and the costs at
the axiom level is suggested by [26]. However, the user type taken as a basis for these
optimizations is again the query-based one (see above).

4 New Approach to Expert Interaction

4.1 Idea

In the light of the issues pointed out in Sec. 3 and following quite straightforward from
the given argumentation, we propose a new way of expert interaction for fault localiza-
tion in ontologies, namely to abandon “batch-queries” including multiple axioms and
to focus on so-called singleton queries instead. That is, we suggest to restrict queries to
only single-axiom questions. Formally:

Definition 1 (Singleton Query). Let D be a set of diagnoses for an FPI 〈O,B,P ,N 〉.
Then, Q is a singleton query (wrt. D) iff Q is a query (wrt. D) and |Q| = 1.
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4.2 Properties

The advantages of singleton queries are the following:

– Maximally-fine granularity of optimization loop: Each atomic expert input (i.e.,
each classified axiom) can be directly taken into account to optimize further com-
putations and expert interactions. Simply put, each axiom the expert is asked to
classify is a function of all so-far classified axioms.

– Smaller search space: There are fewer singleton queries than there are general que-
ries. Therefore, the worst-case search costs are lower for singleton queries.

– Realistic query assessment: For singleton queries, the binary-outcome assessment
performed by the discussed approaches is exact, plausible and not just an approxi-
mation of the possible real cases—independent of the expert (type). The reason is
that there are exactly two possible outcomes, namely y (query axiom added to P )
and n (query axiom added to N ).

– Direct re-use of existing works: Concepts (e.g., heuristics) and techniques (e.g.,
search algorithms) defined for queries can be immediately re-used for singleton
queries, because each singleton query is a (specific) query.

– Unique optimization criterion: Query-number minimization and (axiom-based) ans-
wering-cost minimization coincide for singleton queries. This unifies the two com-
peting and arguable views on the query optimization problem.

– More informative expert feedback: Negative answers to singleton queries provide
more information than negative answers to normal queries as the former imply that
we know one axiom which is wrong for sure, whereas the latter just tell us that one
of a set of axioms is not true. Therefore, singleton queries, by their nature, impli-
citly appoint how they are answered, independent of the expert (type). Because all
discussed expert types coincide for singleton queries.

On the downside, the smaller search space—apart from the better worst-case query op-
timization complexity—can be seen as a disadvantage as well. Because soundness of
the query search is more difficult to obtain, i.e., more considerations and computati-
ons than for normal queries are required to ensure that the search outcome is indeed a
singleton query. For instance, after having optimized a predefined heuristic measure for
some query candidate (set of axioms) to a sufficient degree, existing approaches [33,
20] post-process this candidate by a query-size minimization step. This step, however,
does not guarantee the reduction to a single axiom. Thus, beside all the mentioned ad-
vantages of singleton queries, an algorithmic and computational challenge towards their
efficient generation and optimization remains to be solved.

4.3 Generation and Optimization

As a first step in this direction we suggest an algorithm that, given a set of diagnoses
D, finds the (next) heuristically-optimal4 singleton query Q ⊆ O (wrt. D) to ask the

4 The global optimization of query costs is proven NP-hard [8] (even without considering the
reasoning complexity for diagnosis and query generation). Hence, the best that methods can
achieve is to optimize some heuristic in each query computation iteration. To this end, a one-
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expert. In this vein, the algorithm can be used in each iteration of a sequential fault
localization session. Such a session is characterized by a loop involving a re-iteration of
the three phases (1) fault hypotheses generation (computation of diagnoses), (2) query
generation and optimization, and (3) query answering and incorporation of the newly
acquired test case(s), until only one diagnosis is left.5 By the theory of model-based
diagnosis [18, 12], this final diagnosis necessarily includes the faulty axioms explaining
all observed problems (e.g., inconsistency, unsatisfiable classes, wrong entailments) of
the ontology. Thus, used for query computation in a sequential session, our algorithm
presented below will deliver a (heuristics-based approximation of the optimal) series of
ontology axioms such that the assignment of each of these axioms to either the positive
or the negative test cases solves Problem 1.

The works of [20, 27] serve as a theoretical and algorithmic basis for our method.
In fact, we slightly extend the theory and adapt the algorithm presented there to accom-
modate singleton queries. First, we briefly review the existing query computation and
optimization algorithm for normal queries, and next we present our adaptations to it.
Query Computation and Optimization for Normal Queries (Recap). Basically, the
algorithm [26] is subdivided into two stages, namely a search for a heuristically-optimal
q-partition P (stage 1) and a search for a cost-optimal query (set of axioms) for this
fixed q-partition P (stage 2). At this, the first stage serves the purpose of optimizing a
heuristic function, e.g., the expected information gain [12, 33], that aims at minimizing
the expected number of queries. The goal of the second stage is to minimize the cost for
query answering based on some axiom-based cost measure, e.g., the number of axioms.

Stage 1: Here, a heuristic search is performed. Such a search is characterized [29]
by a start state, a goal state, a successor function (what are the immediate neighbor
states of a given state?) as well as a heuristic function (what is the expected utility
of visiting a given state?). Originally, the “depth- first, local best-first backtracking”
algorithm works as follows. (Depth-first): Starting from the initial partition 〈∅,D, ∅〉
(start state), the search proceeds downwards by “shifting” diagnoses from the middle
(D−) to the left (D+) part of the q-partition6 until (a) a q-partition with sufficiently
optimal heuristic value has been found (goal state), or (b) there are no successors of
the currently analyzed q-partition. (Local best-first): At each current q-partition, the
focus moves on to the best direct successor q-partition, according to the given heuristic
function.7 (Backtracking): The search procedure backtracks in case all successors of a

step-lookahead query evaluation [11] (what is the expected situation after the query has been
answered?) is state-of-the-art and also used in this present as well as in existing works. Note
the similarity to decision tree learning approaches [16].

5 Note that this condition must be fulfilled after having obtained the answer to a finite number
of queries as each query, regardless of its answer, rules out at least one diagnosis (cf. Sec. 2),
and the number of diagnoses is bounded by the number of subsets of the finite ontology O.

6 Note, q-partitions with non-empty D0 (i.e., right) part tend to be unfavorable (see argumenta-
tion in [26]) and are thus totally neglected in the q-partition search discussed here for efficiency
reasons. So, in the sequel, we will always assume D0 = ∅ for all mentioned q-partitions.

7 The predicate “local” refers to the fact that the best q-partition to visit next is determined solely
based on the direct successors of the q-partition.
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q-partition have been explored and no goal q-partition has been found yet. In this case,
the next-best unexplored sibling of the q-partition will be analyzed next.

The detailed definition of the used successor function is beyond the scope of this
work. Therefore, we exemplify the underlying principle through an example [26]:8

Example 5. Let a set of minimal diagnoses for an FPI be D = {D1,D2,D3,D4,D5,
D6} = {{2, 3} , {2, 5} , {2, 6} , {2, 7} , {1, 4, 7} , {3, 4, 7}}, where axioms are repre-
sented as numbers for simplicity of notation. Be the current q-partition analyzed in
the search P = 〈{D5} ,D \ {D5} , ∅〉. Given a q-partition as an input, the goal of the
successor function is to output the set of all q-partitions obtainable by minimal changes
from the input q-partition. These direct successor q-partitions can be computed by me-
ans of the notion of a trait. The traits for a q-partition 〈D+,D−, ∅〉 are given by D′i :=
Di \U(D+) for allDi ∈ D−. For P, the traitsD′1,D′2,D′3,D′4,D′6 are given by {2, 3},
{2, 5}, {2, 6}, {2}, {3}, where, e.g.,D′6 = D6\U({D5}) = {3, 4, 7}\{1, 4, 7} = {3}.
Successors of a q-partition exist iff there are at least two different subset-minimal traits
for this q-partition. For P, this holds true, since D′4 as well as D′6 are subset-minimal;
note, however, that all other traits are not subset-minimal as they are each proper su-
persets of D′4 or D′6. If successors exist for a q-partition Pr = 〈D+

r ,D
−
r , ∅〉, then its

direct successors are given by the q-partitions resulting from Pr by transferring all di-
agnoses from D−r to D+

r which have the same trait and whose trait is subset-minimal
among all traits for Pr. For P, this means that there are two direct successors, namely
〈{D5,D4} ,D \ {D5,D4} , ∅〉 and 〈{D5,D6} ,D \ {D5,D6} , ∅〉. ut

Stage 2: In this phase, a query (set of axioms) is sought for the fixed (and already opti-
mal) q-partition returned by stage 1. [26] shows that the queries (comprising ontology
axioms) for a q-partition are exactly the hitting sets9 of all traits for this q-partition.
Axiom costs can be minimized by computing hitting sets in best-first order, e.g., by
means of the hitting set algorithm presented in [19]. For instance, in order to minimize
the number of axioms in the query, a minimum-cardinality-first hitting set computation
will do.

Example 6. For the q-partition P from Example 5, all subsets of {2, 3, 5, 6} that include
2 or 3 are queries. The queries with a minimal number of axioms are {2} and {3}. ut

Extension to Singleton Queries. We now present the amendments to the reviewed
query computation and optimization algorithm (stages 1 and 2) that are necessary to
deal with singleton queries.

To restrict the q-partition search in stage 1 to only q-partitions for singleton queries,
we first need a criterion that tells us for which q-partitions associated singleton queries
do and do not exist. The following theorem provides such a criterion. The idea is that
a singleton query (consisting of an ontology axiom) exists for a q-partition iff all traits
for this q-partition include this axiom.

8 In the sequel, we will use the following abbreviations: Given a collection of sets C, we denote
by U(C) the union and by I(C) the intersection of all sets in C.

9 A set H is a hitting set of a collection of sets C = {S1, . . . , Sn} iff H ⊆ S1 ∪ · · · ∪ Sn and
Si ∩H 6= ∅ for all Si ∈ C.
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Theorem 1 (Singleton Query Criterion). Let D be a set of minimal diagnoses for the
FPI 〈O,B,P ,N 〉 and ax ∈ O. Then, {ax} is a singleton query (wrt. D) iff there is a
q-partition P = 〈D+,D−, ∅〉 (wrt. D) such that I(D−) \ U(D+) ⊇ {ax}.
Note that Theorem 1, in particular, means that each axiom occurring in some, but not all,
(known) diagnoses in D is a singleton query. However, we want to systematically enu-
merate an as small as possible number of such queries in a (heuristically) optimal order.
Therefore, we next “translate” the above criterion to a successor function that, for any
given q-partition, generates all and only singleton query successor q-partitions. Such
a function, plugged into the search (stage 1) described above instead of the successor
function for normal queries—while re-using everything else of the existing algorithm—
yields a sound and complete method for singleton query q-partitions.

Example 7. Recall the diagnoses set D from Example 5. For this, e.g., {7} is a singleton
query as there is the q-partition P := 〈{D1,D2,D3} , {D4,D5,D6} , ∅〉 for which the
criterion I(D−) \ U(D+) = {7} \ {2, 3, 5, 6} ⊇ {7} holds. However, assuming D
consisted only of, e.g., D4,D5,D6, {7} would not be a (singleton) query (wrt. D). The
reason is that a negative answer to it would not invalidate any (known) diagnosis. ut
The following matrix-representation for a q-partition’s traits is a useful tool towards
defining the successor function for singleton query q-partitions.

Definition 2 (Axioms-Traits Matrix (ATM)). Let P = 〈D+,D−, ∅〉 be a q-partition
where D− = {Dk1

, . . . ,Dkn
} and {ax 1, . . . , axm} be the set of all axioms occurring

in the traits D′k1
, . . . ,D′kn

for P. Then, we call the m × n-matrix AP = (aij), where
aij = 1 iff ax i ∈ D′kj

and aij = 0 else, the axioms-traits matrix (ATM) for P.

Example 8. For the q-partition mentioned in Example 7, the ATM is given by the follo-
wing matrix. In fact, the matrix represents the statements that axiom 1 ∈ D′5 (first row),
axiom 4 is an element of D′5, D′6 (second row), and so on. ut

D4 D5 D6( )
0 1 0 1

0 1 1 4

1 1 1 7

Definition 3 (Domination). Let AP be the m× n ATM for a q-partition P and ai. as
well as aj. be matrix rows where 1 ≤ i, j ≤ m. Then, ai. dominates aj. iff air = 1 for
all indices r ∈ {1, . . . , n} for which ajr = 1. Further, ai. strictly dominates aj. iff ai.
dominates aj., but aj. does not dominate ai.. We call a row superior row iff it includes
at least one 0-entry and is not strictly dominated by any other row.

Example 9. In the ATM given in Example 8, the second row is the only superior row.
The first row is not superior because it includes only 1-entries, and the last row is not
since it is dominated by the second one. ut

The next theorem states the successor function for singleton queries. Informally, it says
that each superior row of a q-partition’s ATM represents a singleton query successor q-
partition of this q-partition. Each diagnosis associated with a 1-entry in a superior row
is an element of the D− part of the successor q-partition and all remaining diagnoses in
D are in the D+ part.
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Algorithm 1 (Singleton) Query Selection
Input: set of minimal diagnoses D for some FPI 〈O,B,P,N 〉, heuristic h1 (to minimize # of queries) to be optimized

in stage 1, heuristic h2 (to minimize effort per query) to be optimized in stage 2, boolean s affecting the generation of a
singleton (s = true) or a normal (s = false) query

Output: best (singleton) query wrt. h2 among all queries for the q-partition of D with best h1

1: P← FINDBESTQPARTITION(D, h1, s) . stage 1
2: Q← FINDBESTQUERYFORQPARTITION(P, h2, s) . stage 2
3: return Q

Theorem 2 (Singleton Query Successor Function). Let D be a set of minimal diag-
noses for an FPI and P = 〈D+,D−, ∅〉 be a q-partition (wrt. D). Let further AP be the
ATM associated with P, and R be the set of the row indices of all superior rows in AP.
Then, the direct singleton query successors of P are given by

{〈
D+

i ,D
−
i , ∅

〉
| ai. ∈ R

}
where D−i =

{
Dkj
| aij = 1

}
and D+

i = D \D−i .

Example 10. Let us reconsider the q-partition P of Example 7. Using Theorem 2 and
our observations of Examples 8 and 9, we find that 〈{D1,D2,D3,D4} , {D5,D6} , ∅〉
is the only singleton query successor q-partition of P. ut

For stage 2 we get—immediately from Theorem 110—that each axiom appearing in all
traits of the singleton query q-partition selected in stage 1 is a singleton query:

Corollary 1 (Singleton Query Extraction). Let P = 〈D+,D−, ∅〉 be a q-partition
that satisfies the criteria given by Theorem 1 and let AP be the ATM associated with
P. Then, all singleton queries (consisting of axioms in O) for P...

1. ...are given by {{ax} | ax ∈ I(D−) \ U(D+)}.
2. ...are given exactly by the axioms representing rows with only 1-entries in AP.

Example 11. The only singleton query {ax} for ax ∈ O for the q-partition P of Ex-
ample 7 is {7}. This can be seen from P’s ATM shown in Example 8 where the row of
7 is the only row without any 0-entry. ut

4.4 Complexity Analysis

The complexity of the suggested algorithm for the generation of a heuristically-optimal
singleton query for a given sample of diagnoses is as follows:

Theorem 3 (Complexity). Let D be the set of known diagnoses and nmax be the num-
ber of axioms in the diagnosis of maximal size in D. Then, Algorithm 1 with setting
s = true requires O(n4

max|D|3) time and O(nmax|D|3) space.

Proof. We first consider the time and then the space complexity.
Time complexity (stage 1): At each node in the search tree a q-partition and a respective
ATM must be computed. The construction of a q-partition requires O(|D|) steps. The
creation of an ATM needs one iteration through all (axioms of the) diagnoses in D−,
i.e. O(nmax|D|) steps.

10 Note, I(D−) \U(D+) is exactly the intersection of all traits of the q-partition
〈
D+,D−, ∅

〉
.
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Successor extraction for the q-partition at each node requires the finding of all supe-
rior rows in the ATM. This can be accomplished by checking, for each row, whether it
has a 0-entry and whether it is not dominated by any other row. There are O(nmax|D|)
rows (if all diagnoses are disjoint and have equal size nmax) and each row has nmax

entries. Checking the presence of a 0-entry requires O(nmax) checks. Domination can
be checked by comparing all (same-indexed) entries of two rows, i.e., by means of
O(nmax) comparisons. There are O((nmax|D|)2) pairs of rows for the domination test.
Hence, we need O(n2

max|D| + nmax(nmax|D|)2) = O(n3
max|D|2) steps for successor

computation. Altogether, the time complexity at each node is thus in O(nmax|D| +
n3
max|D|2) = O(n3

max|D|2).
As a consequence of Theorem 1, the number of explored q-partitions in stage 1

is bounded by |U(D)| ≤
∑
D∈D |D| ≤ nmax|D|, i.e., the q-partition search tree has

O(nmax|D|) nodes.

Consequently, the time complexity of stage 1 is in O(n4
max|D|3).

Time complexity (stage 2): For one q-partition P (the one selected in stage 1), one (all)
singleton queries for P can be extracted by scanning all rows of P’s ATM until one (all)
row(s) with only 1-entries are found (Corollary 1). This can be done in O(nmax|D|)
steps (one check for each entry of the ATM). Since all singleton queries can be extracted
within this time bound, the best query as per some heuristic can in particular.

Time complexity (overall): So, the time complexity of Algorithm 1 (stage 1 and 2 toget-
her) is in O(n4

max|D|3 + nmax|D|) = O(n4
max|D|3).

Space complexity (stage 1): For each node of the q-partition search tree, we need to
store the respective q-partition. The ATM associated with this q-partition needed for
successor computation can be computed only at node expansion and does not need
to be permanently stored. Also, it can be discarded as soon as all successors have been
generated. Note, since the (heuristically-)best successor is always chosen as a next node
for expansion by the algorithm, such an on-demand computation of the successor q-
partitions is not possible. Each q-partition can be stored in O(nmax|D|) space (which is
the space to store all diagnoses in D). Any ATM requires O(nmax|D|2) entries because
it has at most nmax|D| rows (if all diagnoses are disjoint and have equal size nmax) and
at most |D| columns (there can be no more diagnoses in D− than there are in D).

Concerning the number of nodes that must be simultaneously stored during the
q-partition search, observe that each successor q-partition results from a q-partition by
shifting some diagnosis from its D− to its D+ set. Hence, at most |D| successors might
exist for any q-partition, i.e., the branching factor of the search tree is bounded by |D|.
Moreover, the depth of the search tree is bounded by |D| as well, since along any branch
downwards in the search tree diagnoses can only be shifted from D− to D+ (and not
vice versa). Since a depth-first search is executed, the space complexity is the product
of the branching factor and the maximal tree depth, and is thus given by O(|D|2) search
tree nodes.

Altogether, the space complexity of stage 1 amounts to the space for a q-partition
times the number of q-partitions simultaneously in memory, plus the space for a single
ATM (of the currently expanded node). Therefore, stage 1 requires O(nmax|D|3 +
nmax|D|2) = O(nmax|D|3) space.
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Table 1: Dataset used in the experiments.

j ontologyOj |Oj | expressivity 1) #D/min/max 2)

1 Koala (K) 3) 42 ALCON (D) 10/1/3
2 University (U) 4) 50 SOIN (D) 90/3/4
3 MiniTambis (M) 4) 173 ALCN 48/3/3
4 CMT-Conftool (CC) 5) 458 SIN (D) 934/2/16
5 Conftool-EKAW (CE) 5) 491 ALCH(D) 953/3/10
6 Transportation (T) 4) 1300 ALCH(D) 1782/6/9
7 Economy (E) 4) 1781 ALCH(D) 864/4/8
8 DBpedia (D) 6) 7228 ALCHF(D) 7/1/1
9 Opengalen (O) 7) 9664 ALEHIF(D) 110/2/6
10 Cton (C) 7) 33203 SHF 15/1/5

Key:
1): Description Logic expressivity [1]
2): #D, min, max denote the number, the

min. and max. size of minimal diagno-
ses for the input FPI.

3): Ontology included in the Protégé Pro-
ject for educational purposes.

4): Sufficiently complex FPIs (#D ≥ 40)
used in [33].

5): Hardest FPIs mentioned in [40].
6): Faulty version of the DB-Pedia onto-

logy, downloaded from .
7): Hardest FPIs tested in [33].

Space complexity (stage 2): No additional amount of storage is required for stage 2
because according to Corollary 1 the singleton query can be extracted directly from the
ATM of the q-partition selected in stage 1, which however must already be in memory.
Space complexity (overall): The overall space complexity is thus in O(nmax ∗ |D|3).

ut

Two remarks: First, the input size I of Algorithm 1 is in O(nmax|D|). So, in terms of
I , the time and space complexity is in O(I4) and in O(I3), respectively. Second, the
number of diagnoses |D| cannot grow arbitrarily because it is a predefined fixed number
that can be set to any (small) value greater or equal 2 [19].

5 Evaluation

Goal. The aim of the following experiments is the analysis of normal queries under
different answering conditions (expert types discussed in Sec. 3) and the comparison
between normal queries and the proposed singleton queries. Focus of the investigations
is the required effort for the expert for fault localization and the query computation time.
Particular questions of interest are:

Q1 Since existing methods compute and optimize queries based on the assumption
of a query-based expert (cf. Sec. 3), which implications does a violation of this
assumption have on the efficiency of fault localization?

Q2 Given (a system that computes) a particular type of query, which answering stra-
tegy to recommend the interacting expert to pursue?

Q3 Given a particular (type of) expert, which type of queries to ask them?
Q4 What is the expected waiting time for the next query in all scenarios?
Q5 What is better overall, normal or singleton queries?

Dataset, Experiment Settings and Measurements. The dataset of ontologies used
in the experiments is given in Tab. 1. All ontologies are real-world examples and are
inconsistent and/or incoherent. Each of the ontologies O was used to specify an FPI
fpi := 〈O, ∅, ∅, ∅〉, i.e., the background knowledge B as well as the positive (P ) and
negative (N ) test cases were (initially) empty. Tab. 1 also shows the diagnostic structure



Title Suppressed Due to Excessive Length 15

(# of axioms |O|, logical expressivity, # and min./max. size of minimal diagnoses) for
the considered FPIs. As heuristics (h1) for stage 1 we used the query selection measures
discussed in [21, 25]. For stage 2 we used the number of axioms in the query as a
heuristic (h2). For each FPI and each heuristic h1 we ran 20 fault localization sessions
(each time using a different random specification of the actual diagnosis to be located).
The number of diagnoses computed before each query selection (i.e., given as input to
Algorithm 1) was set to (maximally) |D| = 10. Since some heuristics (h1) depend on
the diagnoses probabilities, we sampled and assigned uniform random probabilities to
diagnoses for each FPI. For each performed fault localization session we measured

M1 the average computation time to find the best next query (time per Q),
M2 the average number of q-partitions generated per computed query (generated QPs

per Q), and
M3 the number of answered queries (#Q) as well as
M4 the number of classified query-axioms (#Ax)

required until finding the predefined actual diagnosis with certainty.
Representation of Experiment Results. Each of the Figures 9 – 17 provides a per-
ontology overview of the observations regarding M1 – M4 we made throughout the
experiments, for the ontologies given in Table 1. Specifically, the bars show M3 and
M4 for the different expert types, i.e., the minimalist (min), the pragmatist (prag), the
maximalist (max), and the query-based expert (q-based), as discussed in Sec. 3. More-
over, the lines report M1 (red line) and M2 (black line). On the x-axis, we have a block
showing the values for normal queries (normal Q, left) and a block depicting the mea-
surements for singleton queries (singleton Q, right). In order to not overload the figures
and because the observations regarding other heuristics are mostly consistent with the
presented ones, Figures 9 – 17 plot only the results for the most-popular heuristics h1

in the field [33, 28], i.e., ENT (maximize information gain per query), SPL (maximize
worst-case diagnoses elimination rate per query) and RIO (optimize balance between
ENT and SPL).

Figures 2 – 8 give violin plots for all11 heuristics in the field [21, 25] that show the
difference in query answering effort (M4) between a usage of the best answering stra-
tegy for normal queries and the usage of singleton queries. Each violin plot combines
a box-plot with a kernel density estimation. In particular, the median is represented by
a white dot. If the latter is above (below) the red zero-line, then this means that sing-
leton queries imply less (more) expert effort in the majority of the observed diagnostic
sessions. Simply put, the singleton query approach wins on average iff the white dot is
above the red line. The additional heuristics not mentioned above that are shown in Fi-
gures 9 – 17 are RND (random query selection), BME (select query that maximizes the
number of diagnoses that can be eliminated with a probability larger than 0.5), KL (se-
lect query with maximal information-theoretic “disagreement” between query-outcome
predictions of the known diagnoses) and EMCb (select query that maximizes expected
diagnoses elimination rate). For details on these heuristics see [20, 21, 25].
Discussion of Experiment Results. We address questions Q1 – Q5 in turn.

11 Note that the MPS heuristic is not (directly) applicable to singleton queries and thus omitted.
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Ad Q1: As shown by the vertical bars in Figures 9 – 17, if normal queries are answered
by an axiom-based strategy (min, prag, or max) that provides labels for (some or all)
axioms in the query, then the effort for the expert is significantly lower than in case of
a query-based strategy where an expert just gives a label for the query as such. This
effort reduction holds for all ontologies and in terms of both the number of queries (#Q)
and the number of checked axioms (#Ax). In fact, this result is not very surprising. The
simple reason for it is that each axiom-based method involves strictly more informative
answers than a query-based answering style (cf. Sec. 3). However, not all of the axiom-
based approaches are equally good, as analyzed in Q2.

Ad Q2: (Normal queries:) As all of the Figures 9 – 17 unequivocally indicate, the prag-
matist approach is the optimal choice for normal queries in terms of #Ax. Also wrt.
#Q, the pragmatist is the most reasonable expert type, although there are ontologies for
which other approaches are better—but, if so, then just marginally. For instance, for on-
tology C, the maximalist strategy is the best choice when the number of queries should
be minimized. The minimalist answering behavior, in contrast, was never the best stra-
tegy to minimize #Q in our experiments. However, as argued in Sec. 3, we believe that
#Ax is the more reasonable and realistic effort metric. In this view, the pragmatist ans-
wering style, where all query-axioms until the first negative one are classified and all
others are left unclassified, is clearly the most efficient one.

So, the pragmatist approach appears to be the best trade-off between effort of query
answering and achieved gain in terms of diagnoses discrimination. While this result is
not self-evident at all, a likely explanation for it is the following. When compared to the
maximalist approach, the gain per axiom among the additional axioms classified after
having found the first negative axiom is lower than the gain of the first axioms classified
(cf. the “law of diminishing returns”). In comparison with the minimalist strategy, it
seems that positively classified query-axioms (before the first negative axiom is found),
do bring a significant gain as compared to not classifying them.

This matter of fact is quite well exposed in Figures 9 – 17, which show that the num-
ber of queries remains approximately the same for all axiom-based answering methods,
whereas the number of inspected axioms is minimal for the pragmatist approach.
(Singleton queries:) All four expert types coincide for singleton queries (cf. Sec. 3).

Ad Q3: (Query-based expert:) If the effort metric #Ax is considered, singleton queries
are distinctly the interaction method of choice, as clearly evidenced by Figures 9 – 17.
The cost overhead in terms of #Ax when relying on normal instead of singleton que-
ries amounts to up to over 200 % (e.g., CC ontology, RIO heuristic). Hence, although
normal queries are optimized based on an analysis focusing on the query-based user,
singleton queries are drastically more efficient in this scenario. This has two reasons.
First, singleton queries are optimized for the query-based expert as well. Because they
are—trivially—optimized for all discussed types of users, as all of them behave alike
when asked singleton queries. Second, classifying singleton queries brings more infor-
mation per inspected query-axiom than classifying normal queries. Especially in case
the given answer is negative, a singleton query pinpoints a faulty axiom whereas a nor-
mal query (including more than one axiom) just indicates that (any) one of its comprised
axioms is faulty.
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On the other hand, when measuring the effort by #Q, then there are cases where
normal queries, and others where singleton queries are better. In concrete terms, sing-
leton queries, on average, prevail over normal ones in all but two (i.e., K and D) of the
investigated ontologies. The cause of this lies in the fact that normal (non-singleton)
queries provide more information than singleton ones given a positive query answer
(multiple vs. a single axiom added to positive test cases), whereas the reverse is true for
a negative answer (one undefined axiom of multiple asserted wrong vs. one particular
axiom declared wrong). Obviously, the positive impact of singleton queries in the ne-
gation case compared ot normal queries outweighs the reduced gain in the affirmation
case in the majority of examined scenarios.

(Axiom-based expert:) Studying Figures 9 – 17 and comparing the best axiom-based
answering strategy for normal queries, namely the pragmatist approach (see Q2 above),
with singleton queries, we find that, in most cases, the singleton querying method is
superior to normal querying as regards #Ax. To illustrate this observation in more detail,
Figure 1 shows the incurred overhead in terms of the average #Ax for all heuristics h1

when using normal queries as compared to singleton queries. For instance, for the three
heuristics analyzed in Figures 9 – 17, we find that singleton queries reduce the expert
costs on average for 7 of 9 investigated ontologies when using ENT or SPL, and even in
8 of 9 cases for RIO. Averaged over all ontologies, we notice that the highest expected
cost reduction by using singleton queries instead of normal ones is achieved by RIO
(see rightmost area in Figure 1).

overhead % poverhead % prag vs. singleton

U T E M K D C O CC CE avg (all onto)

ENT 1 1 31 ‐2 ‐6 5 11 21 11 8

RND 3 2 10 2 ‐3 ‐1 13 5 11 5

SPL 0 1 21 2 ‐6 2 15 5 18 7

RIO 2 16 26 ‐4 8 12 24 5 23 13

BME 0 12 20 7 ‐4 ‐19 14 ‐8 5 3

KL ‐2 2 9 6 3 2 10 13 10 6

EMCb ‐8 11 22 ‐6 7 12 19 14 20 10
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Fig. 1: Bar chart showing the average overhead in % regarding the number of classified axioms
(#Ax) per diagnostic session, grouped by ontology (x-axis) and heuristics (different colors).

However, when looking at the single fault localization sessions, there is a significant
number of cases where normal queries answered by the pragmatist approach are the
best choice wrt. #Ax. This is well illustrated by the violin plots shown in Figures 2 – 8.
While singleton queries are the equally good or better choice in the majority of cases
(white dot at or above the red line) for all ontologies when using the heuristics RND,
ENT or KL, for eight of nine ontologies in case of RIO, BME or EMCb, and for seven
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of nine in case of SPL, we nevertheless realize that a significant area of almost all violin
plots is below the red line. This area denotes the proportion of sessions where normal
queries outperformed singleton ones. From this we discern that normal queries are a
reasonable way of interaction with an expert, but can match up to singleton queries
only if the pragmatist answering behavior is given. Hence, existing systems relying
on normal queries should advise their users to follow this approach to minimize their
debugging time and effort.

On the other hand, when the aim is to minimize #Q, the picture looks at lot different.
Here, all axiom-based strategies used in combination with normal queries outperform
singleton queries—for all investigated ontologies (see Figures 9 – 17). This situation,
however, is absolutely expected and its explanation is straightforward. Because, first,
normal queries are computed with the aim to minimize exactly #Q, while being selected
from a query space that strictly subsumes the space of singleton queries. Second, normal
queries generally comprise multiple axioms, and all axiom-based users classify multiple
of these axioms per query (averaged over positive and negative answers). Third, the
metric #Q abstracts from the effort in terms of classified axioms and counts just the
number of asked queries. In the light of these aspects it is clear that fewer normal
queries suffice to gather the same information as obtained using a higher number of
singletons. This tells us that normal queries are the best choice when #Q is the metric
to be minimized.

Ad Q4: Drawing our attention to the lines in Figures 9 – 17, we clearly recognize that
singleton queries require significantly less computation time than normal queries (re-
gardless of the answering strategy12). In numerical terms, the savings in average com-
putation time per query through the usage of singleton queries instead of normal ones
amounts to between 80 % and 90 % over all ontologies. Please note, however, that ab-
solute calculation times per query (stages 1 and 2, cf. Sec. 4.3) are very low (in the
range of a few milliseconds) for both normal and singleton queries in all studied ca-
ses. Consequently, the time is definitely not a tie-breaker when deciding between both
approaches. The justification for the computation speed-up when drawing on single-
ton queries as opposed to normal queries is the lower number of q-partitions that need
to be explored in stage 1 of Algorithm 1 (cf. the “smaller search space” discussion in
Sec. 4.2). This can be well read from Figures 9 – 17, where the red line (query compu-
tation time) changes proportionally to the black line (generated q-partitions).

Ad Q5: As the analyses and argumentations for Q1 – Q4 elucidate, singleton queries
are by and large the best choice in case one would develop a debugging tool from scra-
tch. The reasons for this conclusion in favor of singleton queries are—besides the pros
enumerated in Sec. 4.2—their simplicity (interacting users need no advise whatsoe-
ver regarding the best answering strategy, etc.), their optimality and same performance
achieved for all discussed expert types (all expert types coincide for singletons), their

12 It may seem unnecessary to differentiate between different answering strategies when con-
sidering the query computation time. However, each answering behavior involves different
numbers and types of test cases that are added upon a query’s answer, and these can, in theory,
affect the computation time of prospective queries.



Title Suppressed Due to Excessive Length 19

time-efficiency (faster computation), and their superior performance in the majority of
cases over normal queries (fewer required expert interactions for fault localization).

In case of already existing systems that draw on normal queries, experts should be
advised to act according to the pragmatist answering strategy. In this case, an average
performance comparable to singleton queries will be achieved.

6 Research Limitations and Future Work

The primary aim of this paper is to assess the usefulness of the new singleton query type
for interactive fault localization in ontologies. As our results reveal, singleton queries
indeed provide a reasonable and efficient means for expert consultation and, altogether,
outperform existing interaction techniques. Thus, this work on the one hand testifies
that fault localization using singleton queries is a promising topic for further research,
and on the other hand provides first results in this direction.

However, this work also comes with limitations. First, our evaluations are based
on simulations of debugging sessions and objective measures such as the number of
required queries or classified axioms, or the computation times. Beside this objective
assessment, of course, it is important to validate the subjective usability and acceptance
of the approach, for instance in terms of a user study. This is part of our future work.
However, we are nevertheless confident that users who are familiar using normal que-
ries would likewise accept and adopt singleton queries. The first argument in this regard
is that normal queries might be singletons as well, simply because they can contain one
or more axioms. Second, there is no retraining or relearning whatsoever required to
switch from the usage of normal queries to singletons, regardless of whether the ex-
pert is a query- or axiom-based type, since both querying approaches ask the user the
same question, whether the set (or conjunction) of query-axioms is an entailment of the
intended ontology. In fact, singleton queries even provide less space for misunderstan-
dings and are easier explained to the user than normal ones as the implication of the set
of axioms does not need to be clarified. Due to these points, we believe that the main
results regarding the effectiveness of the query-based approach we obtained in our past
user study [23] conducted for normal queries can be transferred to singletons as well.

A second limitation is the restriction to so-called explicit queries [20]—those that
are constituted by axioms from the ontology at hand—in our theoretical and empirical
analyses. The reason we did so is because we were able to devise an algorithm for the
computation and optimization of explicit queries, by drawing on and extending the the-
ory elaborated by [20]. The finding of an efficient algorithm that soundly generates im-
plicit singleton queries, in contrast, is an open issue and on our future work agenda. As
discussed in Sec. 3, this difficulty also explains why current approaches restrict them-
selves to normal (and not singleton) queries. Implicit queries are interesting particularly
from the point of view of query complexity, i.e., how well an expert might understand
(the axioms in) the query. A (syntax-based) model for estimating this complexity is
suggested and evaluated in [23]. According to it, e.g., axioms like ASubClassOf B
are easier to comprehend for users if A,B are atomic classes rather than complex class
expressions involving, e.g., negation or property restrictions. Whereas the syntactic (or
structural) complexity of explicit queries depends on the complexity of (the axioms in)
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the ontology, the shape of implicit queries can be controlled subject to the options offe-
red by the used Description Logic reasoner [1]. Reasoners such as Pellet [38] or HermiT
[36], for example, can be configured to restrict the computation of entailments to only
specific axiom types, e.g., simple class subsumptions as mentioned above or basic class
assertion axioms. In spite of this advantage over explicit queries, the use of only impli-
cit queries leads to the loss of the guarantee [19, Prop. 7.5] that there is always a query
to discriminate between two competing diagnoses. This underscores the importance of
explicit queries, as discussed in this work.

As a third limitation, it should be noted that the analyzed expert types, as discussed
in Sec. 3, provide by no means a complete characterization of all possible cases that
could arise. While the discussion in this work bases on the assumption that an expert
will provide for each query at the minimum as much information as is necessary to
classify the entire query as a positive or negative test case (cf. the expert function in
Sec. 2), there are (at least) two further query answering scenarios that are worthwhile
considering. First, there is the case where the expert classifies a proper subset (or even
none) of the axioms of a normal query positively while not labeling any axiom negati-
vely, e.g., due to laziness or lack of knowledge. In such a scenario, the expert does not
“implement” the expert function, as their answer leaves the classification of the query
open—it could be negative if some of the remaining non-classified axioms is actually
a non-entailment, or positive of all of them are entailments. Second, there is the case
where an expert might misclassify axioms when answering queries. Such “oracle er-
rors” were observed quite commonly in the studies conducted by [23]. Investigating
these scenarios for normal and singleton queries as well as the conception of strategies
how to handle these cases is another research avenue we will prospectively pursue.

In the light of these aspects, this work is just a first step towards understanding the
impact of different interaction modes with users in the ontology fault localization dom-
ain. With the suggested singleton queries as an interface between expert and debugging
system, however, it also gives a strategy that makes the overall fault finding process
more efficient while not rendering the task more complicated.

7 Conclusions

We observe that existing approaches to query-based fault localization in ontologies in-
teract with an expert by means of batch questions. That is, an expert is asked to classify
a set of axioms as either a positive test case (the conjunction of axioms in the set is
an entailment of the intended ontology) or as a negative one (some axiom is not an in-
tended entailment). We point out that, on the one hand, there is a multitude of variants
how an expert might answer such batch queries. In particular, we differentiate between
four different expert types with regard to their query responses. On the other hand, cur-
rent approaches ground the computation, selection and optimization of batch queries
on the assumption of one particular of these answering behaviors. Since violations of
this assumption turn optimizations into approximations and might lead to unexpected
results and worse efficiency of the interactive fault localization process, we suggest as
a remedy to use singleton queries, i.e., queries including exactly one axiom, to consult
an expert. We elaborate a theory of computation and (heuristics-based) optimization
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of singleton queries and provide complexity results for the suggested poly-time and
poly-space algorithm.

Besides several apparent advantages of singleton queries in comparison to normal
ones—such as a smaller search space, the facilitation of a precise (non-approximate)
a-priori query assessment, or a more informative expert feedback—we conduct com-
prehensive empirical evaluations to gauge the usefulness of the new querying approach
with regard to the expert waiting time between two queries and the effort necessary to
locate the faulty axioms in the ontology. The main conclusions drawn from this study
are:

1. Singleton queries are the overall best means of user consultation. The required ex-
pert interactions in terms of classified axioms are lower than for batch queries in
the majority of diagnostic sessions, for almost all examined scenarios. Moreover,
the time required for query computation and optimization is reduced by 80 to 90 %
when using singletons. In absolute terms, it takes the proposed algorithm just a few
milliseconds to obtain the heuristically-optimal query in the entire query search
space. Furthermore, singleton queries are simpler and equally well suited for all
different discussed query answering behaviors.

2. For batch queries, we find that there is a significant difference regarding the requi-
red expert interactions for fault localization for the various discussed query answe-
ring styles, with the best strategy being the chronological evaluation of axioms in
the query until the first negatively classified one (if any) is found. In particular, this
leads to less expert effort than classifying (i) all axioms per query or (ii) just a mi-
nimal subset of the query-axioms. When experts are properly advised to pursue the
right answering strategy, then the costs of batch queries are comparable to singleton
ones. This shows that both batch and singleton queries are, in general, reasonable
approaches.

Finally, it is worthwhile noting that this approach is generally applicable for any know-
ledge representation language for which the entailment relation is monotonic (cf. [19]),
e.g., Horn Logic, Propositional Logic, diverse constraint languages, as well as for other
model-based diagnosis applications, as shown by [24].
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